$$\frac{Group Theory}{Week \# 44 Lecture \# 15}$$

$$T = \frac{Group Theory}{26} = 2g \in 6 : 9x = xg , \# x \in G_{1}^{2} < 16$$
Recall · Ant (G) = 2# · 9: 6 · 0 cantomorphism 3
Tran (G) = 2 · 2g : g \in G_{3} where $2(x) = g \times g^{-1}$
Note : $g \in X(G) \iff 2_{2}(x) = g \times g^{4} = gg^{4} \times 2x$
 $\Rightarrow 2_{g} = id_{g} (The UserK \land Tin(G))$
 $\frac{1}{100} G/2(G) \cong Jnn(G)$
 $\frac{1}{100} G/2(G) \cong G = 2g$
This is a surjective homomorphism, with $[ker(1) = \frac{7}{2}(G)]$
By FTH: $G \xrightarrow{2} 2g$
 $G/2(G) \cong Tin(G)$
 $\frac{1}{10} G/2(G) = \frac{1}{2} G$
 $\frac{1}{100} \frac{1}{100} \frac{$

Examples (1)
$$G = Z_{0}$$
, p prime $(Z_{2}, Z_{3}, Z_{5}, ...)$
reasons $J[H \leq G(\underset{i \in k \in I}{\cong} H \leq G)$, then $[H| I| Z_{0}] = p$
 p prime $[H| = 1]$ or $[H| = p$
 P prime $[H| = 1]$ or $[H| = p$
 $H \geq e^{-1}$ $H \geq G$
 $(Troof : Leter on)$
 (Z) the smallest non-abelian simple group is
 $(A = 5)$ (the alternating group of order $\frac{5!}{2} = 60$)
 $(Tris incluses that one caunot solve the
 $questic equation by radicele - Galois$)
 \overline{H} Symmetric & Alternating groups
Let $S_{N} = S_{M}m(C_{N}J)$, where $\overline{p}_{1} = \frac{1}{2}U_{2} \dots N_{3}$
 $- the group of call bijections of the set (D)
with group operation = composition
Simplest examples: $S_{1} = \frac{1}{2}H^{2}$
 $S_{2} = \frac{1}{2}(\frac{123}{125}), (\frac{123}{221}), (\frac{123}{122}), (\frac{123}{122}), (\frac{122}{22})$
 O_{2}
 $S_{3} = \frac{1}{2}(\frac{123}{125}), (\frac{123}{212}), (\frac{123}{122}), (\frac{123}{122}), (\frac{122}{122})$
 O_{2}
 $S_{3} = \frac{1}{2}(\frac{123}{125}), (\frac{123}{121}), (\frac{123}{122}), (\frac{123}{122}), (\frac{123}{122})$
 $Value (Sup (D))$
 $Value (S$$$

Def (Sign of a permutation) Given a
permutation
$$\sigma \in Sn$$
, we define its sign to be
 $\begin{bmatrix} Sgn(\sigma) = (-1)^{N(\sigma)} \end{bmatrix} \in \{\pm \mid j \neq \mathbb{Z}_{z} = i8j08 \}$
where $\begin{bmatrix} N(\sigma) = \# \{(x,y) \in [n]^{2} : x < y \text{ and } o(x) > \sigma(y)\} \}$
eg: (1) $\sigma = (\frac{12}{21}) \longrightarrow N(\sigma) = \# \{(1,2)\} \quad \begin{pmatrix} 1 < 2 \text{ bit} \\ \sigma(1) = 2 > 1 = \sigma(a) \end{pmatrix}$
 $gn(\sigma) = -1 \quad (\text{nume generally, any item/paritim)}$
(2) $\sigma = (\frac{12}{231}) \quad \begin{pmatrix} 12 \\ 23 \end{bmatrix} \xrightarrow{(12)} (\frac{12}{23}) \xrightarrow{(12)} (\frac{12}{233}) \xrightarrow{(12)} (\frac{12}{2$

Remark It can be shown that $N(\sigma) = \# \xi$ transpositions in a decomposition 2 of σ into a product of transpositions First construction of the parity of this quantity depends only<math>first construction of this quantity depends only<math>first construction fields a map $Sgm: S_m \longrightarrow \mathbb{Z}_2$ $Sgn(\sigma) = \int_1^0 \frac{\sigma}{\sigma} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma}$ For $w \ge 2$, this function is purjective, Since $\{Sgn(L_2) = 0\}$

Furthermode, Sigh is a homomorphism, river we
are country the parity of # of transpersion in
a decompartin, so

$$N(G:G') = N(G) + N(G') \pmod{2}$$

 $N(G') = (1)^{N(G')} + N(G') \pmod{2}$
 $N(G') = (1)^{N(G')} + N(G') \pmod{2}$
 $Sn(G') = (1)^{N(G')} + N(G') = (1)^{N(G')}$
 $N(G') = (1)^{N(G')} + N(G') = (1)^{N(G')}$
 $Sn(G') = (1)^{N(G')} + N(G') = (1)^{N(G')}$
 $Sn(G') = (1)^{N(G')} + N(G') = (1)^{N(G')}$
 $Sn(G') = (1)^{N(G')} + N(G') = (1)^{N(G')} + (1)^{N(G')}$
 $Sn(G') = (1)^{N(G')} + (1)^{N(G'')} + (1)^{N(G'')} + (1)^{N(G'')} + (1)^{N(G'')} + (1)^{N($

Ay is a group of order 12
It can be realized as the group of rotations
of a regular tetrahedron
(12) (4 vertices, 6 edges,
4 fores)
elements:
identify
otorotations through axes joining a vertex to the
barycenter of the opposite force:
(12), (134), (13)(24), (14)(23)
No^o votation through axis joining (2) to (34) edges.
Noe: all Televents of Ay are provolucts of exactly two
transpositions
Exercise Find all the subgroups of Ay
Exercise Short that
$$A_4 \cong PSL_2(\mathbb{Z}_3)$$