Group Theory
Week \#4, Lecture \#15
ICenter of a group

$$
z(G)=\{g \in G: \quad g x=x g \quad, \forall x \in G\}<G
$$

Recall: Ant $(G)=\{\varphi: \varphi: G \longrightarrow G$ automorphism $\}$

$$
\operatorname{Inn}(G)=\left\{z_{g}: g \in G\right\} \text { where } \xi(x)=g \times g^{-1}
$$

note: $\quad y \in Z(G) \Longleftrightarrow z_{g}(x)=g \times g^{-1}=99^{-1} x=x$

$$
\begin{aligned}
& \text { anon ass. in } A_{2}+(G)
\end{aligned}
$$

Prop $G / Z(G) \cong \operatorname{Inn}(G)$
Proof let $2: G \longrightarrow \operatorname{Inn}(G)$

$$
g \longleftrightarrow 2 y
$$

This is a surjective homomorphism, with $\operatorname{ker(2)=Z(G):}$
By FTH: $\quad G \xrightarrow{2} \operatorname{Inn}(G)$ (by the note) $G / Z(G)^{-\sigma_{2}} \quad$ with i an isomorphism B

II Sinaple groups
Def A group is simple if st is nontrivial and it contains no nontrivial proper normal subgroups

$$
G \text { simple } \stackrel{\text { def }}{\Longleftrightarrow}(G \neq\{e\} \text { and }(N \not N G \Rightarrow N=\{e\} \text { or } N=G))
$$

Equivalently:
G simple $\Leftrightarrow\left(\forall \varphi: G \rightarrow H\right.$ nom $\left.\Rightarrow \begin{array}{c}\operatorname{ker} \varphi=1 e l \\ \operatorname{ker} \varphi=G\end{array}\right)$ $\Leftrightarrow G$ has no factor gaps, except for G and $\{$ ed

Examples (1) $G=\mathbb{Z}_{\text {is }}$ simple prime $\left(\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{5}, \ldots\right)$
reason: If $H \triangle G(\underset{G a b c e}{\Leftrightarrow} H<G)$, then $\left|H\left\|\| \mathbb{Z}_{p} \mid=p\right.\right.$

Note: The cyclic gormps of prime omber are the only finite abelian goons which are simple. (Proof: later on)
(2) The smallest non-abeliom simple group is (ie, non-yclic)
A5) (the alternating going of order $\frac{5!}{2}=60$) (this implies that one caunotsolve the quintic equation by radicals - Galois)
III Symmetric \& Alternating gramps
Let $S_{n}=\operatorname{Sym}([n])$, where $\left.\bar{n}\right]=\left\{\begin{array}{c}\{1,3, \ldots, n\} \\ \text { Cordered set }\}\end{array}\right.$

- the goop of all bijection of the set [n] with group operation = composition
Simplest examples: $\quad S_{1}=\{$ id $\}$ trivial group

$$
\begin{aligned}
& S_{2}=\left\{\binom{12}{12},\binom{12}{2}\right\} \cong \mathbb{Z}_{2} \\
& S_{3}=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
4 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right]\right.
\end{aligned}
$$

cylestation \rightarrow ()

(312). note: $\left|S_{n}\right|=n$!

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & \cdots & n \\
n & \cdots & n & n & n
\end{array}\right)
$$

Def (Sign of a permutation) Given a permutation $\sigma \in S_{n}$, we define its sign to be

$$
\left.\operatorname{sgn}(\sigma)=(-1)^{N(\sigma)} \in\{ \pm 1\} \cong \mathbb{Z}_{2}=\{\sigma\} \operatorname{O}\right\}
$$

where

$$
N \mid(\sigma)=\#\left\{(x, y) \in[n]^{2}: x<y \text { and } \sigma(x)>\sigma(y)\right\}
$$

$$
\begin{aligned}
& \text { eg: }(1)^{\sigma}=\binom{12}{21} \rightarrow N(\sigma)=\#\{(1,2)\} \quad\binom{1<2 b 2 t}{\sigma(1)=2>1=\sigma(2)} \\
& \rightarrow \operatorname{sgn}(\sigma)=-1 \quad \begin{array}{c}
\text { (nurse generally, any fransparitin) } \\
\text { mas sign }=-1
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
(2) \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) & \left.\begin{array}{l}
(12) \rightarrow(23) \\
0
\end{array}\right) \\
(1,8) \rightarrow(23) \\
(123)=(13)(12) & (33) \rightarrow(3,1)
\end{array}\right\} \rightarrow N(\sigma)=2 \quad \rightarrow \operatorname{sgn}(\sigma)=1
$$

Def Permutations with sign \mid (ie, O in \mathbb{C}_{2}) are called even.
The ones with sign -1 (i.e, 1 in \mathbb{Z}_{h}) are called od.
Remark It can be shown that
$N(\sigma)=\#\{$ transpositions in a decomposition $\}$ of 0 in to a product of transpositions
$\xrightarrow{\text { exercise }} \rightarrow\left[\begin{array}{c}\text { such a deconnpasitim is not unique, but } \\ \text { the parity of this quantity depends only } \\ \text { on } \sigma\end{array}\right.$
(ie. $N(\sigma) \mathrm{mod} 2$ is well-defned)
The above discussim gielols a map
sgn: $S_{n} \longrightarrow \mathbb{Z}_{2} \operatorname{sgn}(\sigma)=\left\{\begin{array}{lll}0 & \text { oreven } \\ 1 & \sigma \text { ovid }\end{array}\right.$
For $n \geqslant 2$, this function is surjective, since $\left\{\begin{array}{l}\sin (12) \\ \operatorname{sgn}\left(\frac{1}{2} 2\right. \\ \left.\frac{1}{2}\right)\end{array}\right)=1$

Furthermole, sgh is a homomorplism, since we are conuting the parsity of \# of transpositions in a olecompostin, so

$$
\begin{aligned}
& M\left(\sigma \cdot \sigma^{\prime}\right)=M(\sigma)+N\left(\sigma^{\prime}\right)(\bmod 2) \\
\therefore \quad & (-1)^{\prime \prime} M(\sigma \sigma)=(-1)^{M(\sigma)+M\left(\sigma^{\prime}\right)}=(-1)^{M(\sigma)}(-1)^{N\left(\sigma^{\prime}\right)} \\
& \operatorname{sgn}\left(\sigma^{\prime \prime}\right)
\end{aligned}
$$

$\frac{\text { Problem }}{(\# 5,53.8)}$ Show that $\#\{$ even perms $\}=\#\{$ udd perms $\}$
Definition Define the alternating group on
n elements as the set of even permutations in S_{n}.
Notation: A_{n}
Lemma A_{n} is a normal subgooup of S_{n}, and
Troof

$$
\begin{aligned}
& A_{n}=\operatorname{ker}\left(\operatorname{sgn}_{n} S_{n} \rightarrow \mathbb{Z}_{2}\right) \\
\therefore & \left|A_{n}\right|=\frac{\left|S_{n}\right|}{\left|\mathbb{Z}_{2}\right|}=\frac{n!}{2}
\end{aligned}
$$

Corollary \#teven permutations\} $=\#\{$ odk permutatior

But $\left|A_{n}\right|=\left|(12) A_{n}\right| \quad$ Ahe cosets of a sulgrapp
i, e. \mid leven perns $||=|$ ind perrs $|$
Ig: $\quad A_{1}=s_{1}=3,3$

$$
A_{3}=\left\{\begin{array}{c}
12\} \\
123
\end{array}\right),\left(\begin{array}{cc}
2 & 3 \\
2 & 3
\end{array}\right),
$$

$A_{2}=\{1\}$
A_{4} is a group of roles 12
It can be realized as the group of rotations of a regular tetrahedron
elements:

- identity
 (4 vertices, 6 edges, 4 fries)
- loorotations through axes joining a vertex to the barycenter of the opposite face:

$$
(123),(1.34),(234),(24)
$$

- (12) $(34),(13)(24),(14)(23)$
180° votatim through axis joining (12) to (34) edges
nite: all non-ilementy of A_{4} are products of exactly trod transpositions
Exercise Final all the subgroups of A_{4}
Exercise Show that $A_{4} \cong P S L_{2}\left(\mathbb{Z}_{3}\right)$

